Modeling Regression Quantile Process Using Monotone B-Splines

نویسندگان

  • Yuan Yuan
  • Nan Chen
  • Shiyu Zhou
چکیده

Quantile regression as an alternative to conditional mean regression (i.e., least square regression) is widely used in many areas. It can be used to study the covariate effects on the entire response distribution by fitting quantile regression models at multiple different quantiles or even fitting the entire regression quantile process. However, estimating the regression quantile process is inherently difficult because the induced conditional quantile function needs to be monotone at all covariate values. In this paper, we proposed a regression quantile process estimation method based on monotone B-splines. The proposed method can easily ensure the validity of the regression quantile process, and offers a concise framework for variable selection and adaptive complexity control. We thoroughly investigated the properties of the proposed procedure, both theoretically and numerically. We also used a case study on wind power generation to demonstrate its use and effectiveness in real problems. About the Speaker Dr. Nan Chen is an Assistant Professor in the Department of Industrial and Systems Engineering at National University of Singapore. He obtained his B.S. degree in Automation from Tsinghua University, and M.S. degree in Computer Science, M.S. degree in Statistics, and Ph.D. degree in Industrial Engineering all from University of Wisconsin-Madison. His research interests include statistical modeling and surveillance of engineering systems, simulation modeling design, condition monitoring and degradation modeling. He is a member of IEEE, IIE, and INFORMS. Enquiry: 3442 8408 All are Welcome! SEEM Seminar 2016-2017/024

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling Regression Quantile Process using Monotone B-splines

Quantile regression as an alternative to conditional mean regression (i.e., least square regression) is widely used in many areas. It can be used to study the covariate effects on the entire response distribution by fitting quantile regression models at multiple different quantiles or even fitting the entire regression quantile process. However, estimating the regression quantile process is inh...

متن کامل

Bayesian quantile regression using random B-spline series prior

A Bayesian method for simultaneous quantile regression on a real variable is considered. By monotone transformation, the response variable and the predictor variable are transformed into the unit interval. A representation of quantile function is given by a convex combination of two monotone increasing functions ξ1 and ξ2 not depending on the prediction variables. In a Bayesian approach, a prio...

متن کامل

Nonparametric M-quantile Regression via Penalized Splines

Quantile regression investigates the conditional quantile functions of a response variables in terms of a set of covariates. Mquantile regression extends this idea by a “quantile-like” generalization of regression based on influence functions. In this work we extend it to nonparametric regression, in the sense that the M-quantile regression functions do not have to be assumed to be linear, but ...

متن کامل

Simultaneous Linear Quantile Regression: A Semiparametric Bayesian Approach

We introduce a semi-parametric Bayesian framework for a simultaneous analysis of linear quantile regression models. A simultaneous analysis is essential to attain the true potential of the quantile regression framework, but is computationally challenging due to the associated monotonicity constraint on the quantile curves. For a univariate covariate, we present a simpler equivalent characteriza...

متن کامل

Inference Using Shape - Restricted Regression Splines

Regression splines are smooth, flexible, and parsimonious nonparametric function estimators. They are known to be sensitive to knot number and placement, but if assumptions such as monotonicity or convexity may be imposed on the regression function, the shaperestricted regression splines are robust to knot choices. Monotone regression splines were introduced by Ramsay [Statist. Sci. 3 (1998) 42...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Technometrics

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2017